Bayesian Fundamentals
Bayes Rule
$$ \begin{aligned} P[\theta|x] &= \frac{P[x|\theta] \cdot P[\theta]}{P[x]} \end{aligned} $$- Prior Knowledge: $P[\theta]$
- Poster Knowledge: $P[\theta | x]$
- Likelihood: $P[x | \theta]$
Estimators
Maximum Likelihood Estimator(MLE): $$ \begin{aligned} \arg\max_{\theta} P[x | \theta] \end{aligned} $$
Maximum A Posteriori Estimator(MAP):
$$ \begin{aligned} \arg\max_{\theta} P[x | \theta] \cdot P[\theta] \end{aligned} $$